IN-SITU CHEMICAL OXIDATION (ISCO) WITH TOTAL CHEMICAL MANAGEMENT

[vc_row][vc_column][vc_column_text]

Project Scope

A Northeast engineering firm was selected to clean up a former roofing tar manufacturing site in Queens, NY. Following extensive bench testing and a comprehensive pilot study, they selected a treatment program using a remediation contractor’s surfactant enhanced In-Situ Chemical Oxidation (ISCO) technology. Due to the extent of contamination and the significant quantities of surfactant, sodium persulfate, and sodium hydroxide required, equipment and field services were required to remediate the site.

The remedial design required high flows (5-20 gallons per minute) of chemicals to be injected site-wide on a daily basis. This required storage and management of bulk chemicals on-site, creating operational and financial challenges for the contractor. USP Technologies developed a Total Chemical Management program to safely and cost-effectively execute the project. Safety and environmental compliance were critical considerations due to the project location in a highly-populated area and proximity to waterways.

Solution

Based on project requirements, USP developed a Total Chemical Management program to meet project schedules and budget objectives:

Site Analysis and Hazards Review

USP engineering personnel worked closely with the remediation contractor to evaluate and plan for the specific hazards of the project site. Project duration occurred over the winter and required equipment and operational adaptation to extreme cold, rain, and snow. Operations within close proximity to the public and public water required strict site safety and environmental procedures.

Read More Download Case Study_Remediation_In-Situ-17-HR (pdf)[/vc_column_text][/vc_column][/vc_row]

NEW YORK ISCO PROJECT – TOTAL CHEMICAL MANAGEMENT PROGRAM

Project Scope

A remediation contractor received a contract to clean up a former Manufactured Gas Plant (MGP) waste collection area. After thorough site characterization, bench testing and a pilot study, the consulting engineer and the remediation contractor selected the contractor’s patent-pending, surfactant-enhanced In-Situ Chemical Oxidation (ISCO) as the treatment technology. Due to the magnitude of the contamination and the widespread nature of the groundwater contamination, significant quantities of proprietary surfactant, iron chelate, sodium persulfate, and caustic, as well as equipment and field services were required to execute the site remediation.

The scope and structure of the project required that a high volume of multiple chemicals be mobilized quickly, which created a significant operational and cost challenge for the contractor. USP Technologies (USP) developed a Total Chemical Management program to accomplish the project efficiently and cost-effectively.

Solution

Based on the requirements for the project, USP developed a Total Chemical Management program to meet project schedules and budget objectives:

Site Analysis and Hazards Review

USP engineering personnel worked closely with the remediation contractor to evaluate and plan for the specific hazards of the project site. Project duration was multi-seasonal and required equipment and operational adaptation to extreme heat, extreme cold and rain.

Read More Download Case Study_New York ISCO Project-17-HR (pdf)

Control of NOx Emissions in a Titanium Sheet Metal Pickling Bath

Project Scope A large stainless steel and titanium pickling and finishing company had an issue with visible NOx fumes discharging out of one of their Midwest facilities. The plant had been tasked with the elimination of the fumes that were being generated from their various pickling baths they utilize. Visible threshold limits for NOx gas are generally 300-400 ppm depending on weather conditions. One of the facilities pickling baths is particularly aggressive and pickles a continuous titanium sheet on a coiler machine and has twice the residence time of other treatments in turn generating high levels of NOx. This can overwhelm the stack gas scrubber, causing NOx levels to rise well over 600 ppm with orange plumes emanating from the plant which are visible to the public. The company’s environmental department reached out to USP Technologies (USP) for assistance. Initial discussions with USP confirmed successful implementation of their hydrogen peroxide (H2O2) technology to pickling baths can specifically inhibit NOx formation. USP had done prior work for stainless steel finishers and it was deemed the technology was transferrable to titanium processing. Technology On a mass basis, the H2O2 demand is a composite of that due to NO2 and NO, with the typical 50:50 ratio producing a theoretical demand of approximately 1.0 parts H2O2 per part NOx.

HNO2 + H2O<sub”>2 <sub”>→ HNO3 + H2O Wt. ratio: 0.4

2NO + 3H2O2 2HNO3 + 2H2O Wt. ratio: 1.7

As shown in the reactions above, oxidation of NOx by H2O2 in-bath, produces nitric acid, thereby allowing recovery and reuse of a critical process reagent. Solution After initial testing, a full-scale demo was put in place for several months on the coiler bath at the plant. USP’s turn-key supply scope included 50 percent technical grade H2O2, a 3,000 gallon double walled bulk storage and an automated feed system. The turn-key system was solely maintained by USP. The program also included USP’s ChemWatch™ – advanced control system with remote telemetry, allowing tank monitoring for inventory and pump systems control and analysis. The tank and pump system are located in the middle of the coil storage area. Since the delivery connection is outside of the building, the system employs a remote delivery alarm system. Results shown in Figure 1 demonstrates how after an initial high dose of H2O2 to treat the NOx that had already built up in the bath, the NOx emissions were effectively controlled with a steady feed rate of 5 gph. Read More Download Case Study_Pickling Bath-17-HR (pdf)

REFINERY GRADE HYDROGEN PEROXIDE ELIMINATES HAZARDOUS HYDROGEN SULFIDE GAS RELEASES DURING COKER UNIT OPERATIONS

[vc_row][vc_column][vc_column_text]

Project Scope

A gulf coast refinery was experiencing unacceptable hydrogen sulfide (H2S) releases into occupied work areas in the Coker unit during cutting & quenching operations. Refinery Coker units are used to process residual oil or ‘heavy ends’. A part of the coking process requires quenching the hot coke with water, resulting in latent hydrogen sulfide being transferred to the water stream and stripping into the vapor phase creating potential exposure risks to operations personnel. In order to protect worker s, hydrogen sulfides in the process water stream must be eliminated.

In late 2016, USP Technologies (USP), leaders in peroxygen-based technologies for industrial water and wastewater treatment applications, was contacted by the refinery in search of a viable solution for its H2S issues. USP recommended a full-service chemical treatment program which included 27% refinery grade hydrogen peroxide, chemical storage, a dosing equipment system, inventory analysis, logistics management, safety training and ongoing field and technical support.

Full-Service Hydrogen Peroxide Treatment Program

The refinery recycles coker quench water in a closed loop, where any chemical used for treatment cannot negatively impact the coking process. Under near neutral pH conditions, the theoretical weight ratio of H2O2:H2S is 1:1, and proceeds according to the following reaction:

H2O2 + H2S S0 + 2 H2O

Since the products of the above reaction are water and inactive elemental sulfur, the chemistry does not negatively impact the batch coking process.

  Read More Download Case Study_Refinery Coker Quenchwater-18-HR (pdf)[/vc_column_text][/vc_column][/vc_row]

Remediation of Pesticides and Petroleum Products | Total Chemical Management

[vc_row][vc_column][vc_column_text]

Total Chemical Management, Specialized Equipment Design

US Peroxide was contracted to provide total chemical management including chemicals, logistics, field services, equipment mixing and storage systems as well as chemical management oversight for the remediation of pesticides and petroleum products at a site located in California. Due to significant dry chemical requirements as well as a large square footage application treatment area, this project included the need to design a novel way to spread supersack quantities of chemical in a controlled manner. The resulting system pictured uses a device at the end of the spreader to accomplish this task. Equipment requirements included three 3-ton capacity dry material spreaders, all terrain tractors and a 3-ton all-terrain forklift system to distribute dry chemicals. US Peroxide can supply a wide range of chemicals such as hydrogen peroxide, ferrous sulfate, sodium persulfate, sodium percarbonate, acids and others commonly used for ISCO or other remediation technologies. These chemicals are available in wet (drum, tote, bulk) or dry (bags or super sacks where applicable) form. USP works with remediation companies to develop a cost effective, logistically optimized, and reliable chemical management program based on project specific chemicals, quantities, usage rates and other project constraints.[/vc_column_text][/vc_column][/vc_row]

Rapid Response Project

[vc_row][vc_column][vc_column_text]

Rapid Response for Environmental Treatment Challenges

USP Technologies is uniquely positioned to rapidly respond to your environmental treatment challenges. USP combines experienced applications and equipment field support with a large inventory of storage systems and pumping modules to respond quickly to time sensitive water and wastewater treatment situations. USP Technologies’ Rapid Response Program consists of timely and effective treatment options for customers. USP maintains equipment inventory and has access to many chemical terminals throughout North America that allows for quick response. USP can respond to customer needs with a combination of technical and applications support, safety and project reviews, equipment supply, installation and service as well as multiple chemical programs. These program elements have proven to be of great value to customers.[/vc_column_text][/vc_column][/vc_row]

Hydrogen Peroxide Turn-key Program Helps Refinery through Aeration Basin Maintenance Outage

[vc_row][vc_column][vc_column_text]US Peroxide’s 27% Hydrogen Peroxide Treatment Program offered the refinery several benefits:
  • US Peroxide’s turnkey supply scope provided a safe and cost effective solution for supply of supplemental dissolved oxygen to this large refinery during the maintenance outage.
  • The biological treatment system’s performance during the outage  convinced the refinery to maintain the hydrogen peroxide storage and dosing system on site to provide supplemental dissolved oxygen (DO) on as “as needed” basis during periods of high BOD/COD loading, upstream process upsets, and filamentous bulking episodes.
In the summer of 2010, a large refinery complex in the Northeast was a facing a 2-3 month maintenance outage on one of two aeration basins in their activated sludge wastewater treatment system. During the outage, all of the refinery wastewater would need to be routed through the one remaining aeration basin.  Since the refinery periodically had difficulty maintaining dissolved oxygen (DO) levels with both aeration basins in service, they needed a temporary (and non-capital) means to provide the biological treatment system with supplemental DO during the maintenance outage. Hydrogen peroxide has been used as a source of supplemental dissolved oxygen (DO) in activated sludge treatment systems for decades. In the aeration basin mixed liquor, H2O2 converts to DO according to the following reaction:

2  H2O2   →  O2  + 2 H2O

This decomposition to DO occurs very rapidly due to the catalytic effect of enzymes (i.e. catalase) present in all activated sludge mixed liquors, and thus provides an immediate source of DO to the biomass.  Since hydrogen peroxide is a liquid, and infinitely soluble in water, the amount of DO provided is not limited by mass transfer of oxygen from the gas phase to the liquid as is the case with mechanical aeration.  More information on this application is provided at this link: Supplemental Dissolved Oxygen. Read More Download Case Study_Refinery-Turnkey-Aeration-15-HR (pdf)[/vc_column_text][/vc_column][/vc_row]

Re-Refinery Used Oil | Sour Water Treated with Hydrogen Peroxide

[vc_row][vc_column][vc_column_text]In North America, approximately 1 billion gallons of used oil are collected annually from generators such as quick lubes, truck fleets, and manufacturers.  Several companies have begun the process of re-refining this hydrocarbon-rich waste product.  Re-refining allows the lubricating oil to be repeatedly re-used as a higher value product. Re-refining involves operations which will separate and remove contaminants in the used oil so that this oil becomes suitable for reuse. The re-refining process is much like that of a traditional refinery with similar waste treatment requirements.  Such was the case for a major used oil re-refinery facility in the mid-west.  They had a “sour water” treatment system that was not performing as designed, resulting in operational problems and safety concerns.  Sour water is hydrogen sulfide rich wastewater water that is generated from a variety of sources including hydrotreaters, reformers and hydrocrackers. Hydrogen peroxide has been shown to be a convenient, cost effective and environmentally friendly part of hydrogen sulfide gas scrubbing technologies.  Scrubbing of hydrogen sulfide using sodium hydroxide and hydrogen peroxide is a well-established technology. A typical scrubbing solution consists of dilute sodium hydroxide to which enough hydrogen peroxide is added to react with the hydrogen sulfide according to the equation:

4H2O2 + H2 H2SO4 + 4H2O

The above reaction predominates at pH > 9.2, and yields soluble sulfate as the reaction product. The stoichiometry calls for 4.25 lbs H2O2 per lb S 2 and it is not unusual for reaction efficiencies to approach 100%, provided that the hydrogen peroxide is added in a controlled fashion and the reaction medium is thoroughly mixed. Enough sodium hydroxide must be present to neutralize the sulfuric acid formed according to the equation:

2NaOH + H2SO4  Na2SO4 + 2H2O

This indicates that for each weight part of hydrogen sulfide, approximately 2½ weight parts of sodium hydroxide are needed. USP Technologies provides a full scope of supply (chemicals, equipment and services) to support emergency and ongoing applications for hydrogen peroxide and a range of water and wastewater treatment chemicals.[/vc_column_text][/vc_column][/vc_row]

Advanced Oxidation for High Strength Caustic Wastewater

A refinery in the Northeast was looking at options to dispose of 10,000 bbls of a high strength, high pH caustic wastewater that had been stored in one of its tanks.  The wastewater had very high phenol levels (14,000 mg/L), which did not allow for processing through the activated sludge system due to biological toxicity issues. Off-site hazardous waste treatment options were available, but would have cost over $600,000.  A less expensive, temporary, non-capital and on-site treatment approach that would eliminate the phenols and allow for processing through the activated sludge system was evaluated and implemented at this facility. Earlier in the year, the refinery had a major activated sludge system upset caused by high chemical oxygen demand (COD) loading that killed the nitrifying bacteria and lowered the dissolved oxygen (DO) levels, which made it difficult to recover and achieve required ammonia removal.  USP Technologies (USP) successfully solved this problem using hydrogen peroxide for sulfide oxidation and supplemental DO, which helped the activated sludge system recover and created an environment that allowed the nitrifying bacteria to reestablish.  Having successfully solved this problem, USP was asked to look at the high strength, high pH caustic water in order to determine if it could be treated on-site and processed through the activated sludge system in a safe and economic manner. Read More Download the Complete Case Study on Advanced Oxidation for High Strength Caustic Wastewater (pdf)

Large Ponds Hydrogen Sulfide Odor Control

[vc_row][vc_column][vc_column_text]

Project Scope

A sugar processing facility was experiencing hydrogen sulfide (H2S) odor issues in their process water stabilization ponds due to anaerobic conditions. The facility’s four identical ponds are 2,500 feet long, 400 feet wide and up to 12 feet deep, with a finger dike down the middle making each pond C-shaped. Each pond can hold approximately 80 million gallons when completely full. Anaerobic conditions develop in the lower layers of these ponds, leading to H2S generation and volatilization. The facility faces stringent seasonal perimeter ambient air quality standards for H2S concentration and is subject to escalating fines with every violation.

In addition, the pond treatment needs are highly variable as high chemical oxygen demand (COD) slugs and/or factory upsets mean that treatment decisions need to be made in real-time, based on measured and expected levels of sulfide, dissolved oxygen, ORP, COD, pH and temperature. Previously, the facility had been utilizing various chemicals, including peracetic acid and catalyzed hydrogen peroxide (H2O2) in totes to mitigate H2S, however, the facility was experiencing difficulty maintaining control of the H2S and was concerned with violating their permit. Given the large surface area and volume of the ponds it was essential that a cost-effective control method be identified and implemented. USP Technologies (USP) was contacted to provide a long term, viable solution.

Technology

Hydrogen sulfide (H2S) is a colorless gas with the characteristic foul odor of rotten eggs; it is heavier than air, poisonous, corrosive, flammable, and explosive. Many facilities, such as this sugar processor, have limits imposed on H2S emissions. Sulfide is generated by sulfate reducing bacteria (SRB’s) in the anaerobic layers of the ponds. H2O2 treats H2S by creating a zone of oxidation in which sulfides are oxidized before being released to the atmosphere. The reaction is as follows:

H2O2 + H2S S0 + 2H2O

Sufficient dosing of H2O2 also prevents the formation of H2S by boosting dissolved oxygen and creating aerobic conditions hostile towards SRB’s per the following reaction:

2 H2O2 O2 + 2 H2O

Solution

The sugar facility conducted an extensive survey of possible control methods and evaluated options on a lab scale prior to pilot testing. H2O2 was found to be the most cost-effective sulfide control agent in the ponds because of its low H2S treatment cost, ability to preferentially oxidize sulfide, including iron sulfide (FeS)

present in the water, permitting long-acting sulfide control by regenerating free ferrous iron (Fe+2) to bind more H2S.

USP provided a program demonstration in 2014, which first involved bringing in tanker truck quantities of H2O2 and pumping this directly into the ponds through fabricated floating distribution nozzles. The desired amount of H2O2 was pumped into specific sections of the ponds, which had anaerobic conditions prevailing, and then the truck would move on to the next section requiring treatment. This provided improved mixing, a lower cost of treatment per gallon, better sulfide control and lowered staff labor costs.

Building off of the success of the tanker treatment method, USP developed an engineered storage and dosing equipment system for H2O2 on each of the four ponds. This allows for treatment to be conducted whenever and wherever conditions warranted. Each of the systems have two floating manifold dosing lines, dubbed PeroxidonsTM, into which H2O2 and pond water are pumped. These lines stretch along the length of each half of the C-shaped ponds, with outlets spaced to distribute H2O2 across the surface of the entire pond. In addition, on each pond 6 – 8 additional dosing lines were installed that allow for concentrated treatment of hotspots including dead zones and the incoming flows. As a result, performance, ease of operation and cost-effectiveness could be improved with the ability to target treatment to specific sections of the pond.

Overall, USP’s full-service hydrogen peroxide program has saved the plant a significant amount of money in fines and operations. USP also maintains a consistent presence on-site, aiding in the daily collection of water and air data, which unburdens plant staff and improves the sulfide control decision-making process. In a collaborative and results-focused approach, USP continues to work closely with plant staff to find ways to improve the program’s effectiveness and to continue lowering the overall cost of treatment.

Treatment results include significant reductions in H2S, increased dissolved oxygen, cost savings compared to previous year’s solutions, reduced in-house labor associated with pond treatment and improved safety over tote handling.

Read More Download Large Ponds Hydrogen Sulfide Odor Control (pdf)[/vc_column_text][/vc_column][/vc_row]

USP Technologies

5640 Cox Rd.

Glen Allen, VA 23060

Toll-free (800) 851-8527

Phone (804) 404-7696

 View a Map

USP - Canada

3020 Gore Road

London, Ontario N5V 4T7

Toll-free (800) 851-8527

Phone (804) 404-7696

 View a Map

Version WPE

Contact Us

Our sales engineers are ready to help you find the right solution. Fill out the form to connect with your local USP Technologies representative.

"*" indicates required fields

This field is for validation purposes and should be left unchanged.

Sign Up For Our Newsletter

Subscribe for exclusive news, products, innovations, events and educational resources sent right to your inbox.

  • This field is for validation purposes and should be left unchanged.